Drivers of variation in species impacts for a multi-host fungal disease of bats.
نویسندگان
چکیده
Disease can play an important role in structuring species communities because the effects of disease vary among hosts; some species are driven towards extinction, while others suffer relatively little impact. Why disease impacts vary among host species remains poorly understood for most multi-host pathogens, and factors allowing less-susceptible species to persist could be useful in conserving highly affected species. White-nose syndrome (WNS), an emerging fungal disease of bats, has decimated some species while sympatric and closely related species have experienced little effect. We analysed data on infection prevalence, fungal loads and environmental factors to determine how variation in infection among sympatric host species influenced the severity of WNS population impacts. Intense transmission resulted in almost uniformly high prevalence in all species. By contrast, fungal loads varied over 3 orders of magnitude among species, and explained 98% of the variation among species in disease impacts. Fungal loads increased with hibernating roosting temperatures, with bats roosting at warmer temperatures having higher fungal loads and suffering greater WNS impacts. We also found evidence of a threshold fungal load, above which the probability of mortality may increase sharply, and this threshold was similar for multiple species. This study demonstrates how differences in behavioural traits among species-in this case microclimate preferences-that may have been previously adaptive can be deleterious after the introduction of a new pathogen. Management to reduce pathogen loads rather than exposure may be an effective way of reducing disease impact and preventing species extinctions.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
منابع مشابه
Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome.
Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans, is spreading across North America ...
متن کاملBats, viruses, emerging diseases and humans
This paper reviews the unique characteristics of bats, their important roles in providing ecosystem services, their viruses in relation to emerging diseases. Bats, as flying mammals, are the second largest order following rodents, with a wide variety (over 1400 identified species among 230 genera of 21 families in the world) due to their flying power and echolocation. Despite their importance a...
متن کاملGenetic diversity of Neotyphodium fungal endophytes in three Iranian grass species using AFLP molecular markers
Genetic diversity of fungal endophytes, Neotyphodium species, was studied in grasses Festuca arundinacea, F. pratensis and Lolium perenne using AFLP markers. Fungi were isolated from the host leaf sheaths and Neotyphodium species were selected based on morphological characteristics. To confirm identity of selected fungi belonging to the genus Neotyphodium, polymerase chain reaction was perform...
متن کاملنقش رسپتورهای شناساگر الگو (PRR) در ابتلا به عفونت های کاندیدایی در انسان
Candida species are medically significant yeast that can cause different infection ranging from mild mucosal to disseminated infection. Invasive and sever mucosal infections are often life threatening disorders, especially in immunocompromised hosts due to immunodeficiency either in adaptive or innate immunity which are susceptible to candidiasis. Nevertheless, not all of them are susceptible t...
متن کاملEnvironment, host, and fungal traits predict continental-scale white-nose syndrome in bats
White-nose syndrome is a fungal disease killing bats in eastern North America, but disease is not seen in European bats and is less severe in some North American species. We show that how bats use energy during hibernation and fungal growth rates under different environmental conditions can explain how some bats are able to survive winter with infection and others are not. Our study shows how s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 371 1709 شماره
صفحات -
تاریخ انتشار 2016